fet_Scikit_Learn
Pages
- Home
- A. fet_FACULTY
- 1. fet_Language_&_Linguistics
- 2. fet_Literature
- 3. fet_Culture
- 4. fet_Science
- 5. fet_Technology
- fet_Artificial_Intelligence
- fet_Computer_Science_&_Engineering
- fet_Data_Science
- fet_Electrical_&_Electronics_Engineering
- fet_Machine_Learning
- fet_Scikit-learn.org
- fet_Scikit-learn_Getting_Started
- 1. Supervised learning
- 2. Unsupervised learning
- 4. Inspection
- 5. Visualizations
- 6. Dataset transformations
- 7. Dataset loading utilities
- 8. Computing with scikit-learn
Pages
- 1. Supervised learning
- 1.1. Linear Models
- 1.2. Linear and Quadratic Discriminant Analysis
- 1.3. Kernel ridge regression
- 1.4. Support Vector Machines
- 1.5. Stochastic Gradient Descent
- 1.6. Nearest Neighbors
- 1.7. Gaussian Processes
- 1.8. Cross decomposition
- 1.9. Naive Bayes
- 1.10. Decision Trees
- 1.11. Ensemble methods
- 1.12. Multiclass and multilabel algorithms
- 1.13. Feature selection
- 1.14. Semi-Supervised
- 1.15. Isotonic regression
- 1.16. Probability calibration
- 1.17. Neural network models (supervised)