- 1.1. Linear Models
- 1.1.1. Ordinary Least Squares
- 1.1.2. Ridge regression and classification
- 1.1.3. Lasso
- 1.1.4. Multi-task Lasso
- 1.1.5. Elastic-Net
- 1.1.6. Multi-task Elastic-Net
- 1.1.7. Least Angle Regression
- 1.1.8. LARS Lasso
- 1.1.9. Orthogonal Matching Pursuit (OMP)
- 1.1.10. Bayesian Regression
- 1.1.11. Logistic regression
- 1.1.12. Generalized Linear Regression
- 1.1.13. Stochastic Gradient Descent - SGD
- 1.1.14. Perceptron
- 1.1.15. Passive Aggressive Algorithms
- 1.1.16. Robustness regression: outliers and modeling errors
- 1.1.17. Polynomial regression: extending linear models with basis functions
Pages
- Home
- A. fet_FACULTY
- 1. fet_Language_&_Linguistics
- 2. fet_Literature
- 3. fet_Culture
- 4. fet_Science
- 5. fet_Technology
- fet_Artificial_Intelligence
- fet_Computer_Science_&_Engineering
- fet_Data_Science
- fet_Electrical_&_Electronics_Engineering
- fet_Machine_Learning
- fet_Scikit-learn.org
- fet_Scikit-learn_Getting_Started
- 1. Supervised learning
- 2. Unsupervised learning
- 4. Inspection
- 5. Visualizations
- 6. Dataset transformations
- 7. Dataset loading utilities
- 8. Computing with scikit-learn
Pages
- 1. Supervised learning
- 1.1. Linear Models
- 1.2. Linear and Quadratic Discriminant Analysis
- 1.3. Kernel ridge regression
- 1.4. Support Vector Machines
- 1.5. Stochastic Gradient Descent
- 1.6. Nearest Neighbors
- 1.7. Gaussian Processes
- 1.8. Cross decomposition
- 1.9. Naive Bayes
- 1.10. Decision Trees
- 1.11. Ensemble methods
- 1.12. Multiclass and multilabel algorithms
- 1.13. Feature selection
- 1.14. Semi-Supervised
- 1.15. Isotonic regression
- 1.16. Probability calibration
- 1.17. Neural network models (supervised)
1.1. Linear Models
Subscribe to:
Posts (Atom)
No comments:
Post a Comment